The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice.
نویسندگان
چکیده
The absence of the cytoskeletal protein dystrophin results in Duchenne muscular dystrophy (DMD). The utrophin protein is the best candidate for dystrophin replacement in DMD patients. To obtain therapeutic levels of utrophin expression in dystrophic muscle, we developed an alternative strategy based on the use of artificial zinc finger transcription factors (ZF ATFs). The ZF ATF 'Jazz' was recently engineered and tested in vivo by generating a transgenic mouse specifically expressing Jazz at the muscular level. To validate the ZF ATF technology for DMD treatment we generated a second mouse model by crossing Jazz-transgenic mice with dystrophin-deficient mdx mice. Here, we show that the artificial Jazz protein restores sarcolemmal integrity and prevents the development of the dystrophic disease in mdx mice. This exclusive animal model establishes the notion that utrophin-based therapy for DMD can be efficiently developed using ZF ATF technology and candidates Jazz as a novel therapeutic molecule for DMD therapy.
منابع مشابه
Novel Adeno-Associated Viral Vector Delivering the Utrophin Gene Regulator Jazz Counteracts Dystrophic Pathology in mdx Mice
Over-expression of the dystrophin-related gene utrophin represents a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). The strategy is based on the ability of utrophin to functionally replace defective dystrophin. We developed the artificial zinc finger transcription factor "Jazz" that up-regulates both the human and mouse utrophin promoter. We observed a significant recover...
متن کاملUtrophin up-regulation by artificial transcription factors induces muscle rescue and impacts the neuromuscular junction in mdx mice
Up-regulation of the dystrophin-related gene utrophin represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy (DMD). In order to re-program the utrophin expression level in muscle, we engineered artificial zinc finger transcription factors (ZF-ATFs) that target the utrophin 'A' promoter. We have previously shown that the ZF-ATF "Jazz", either by transgenic m...
متن کاملExercise increases utrophin protein expression in the mdx mouse model of Duchenne muscular dystrophy.
INTRODUCTION Duchenne muscular dystrophy (DMD) is a lethal genetic disease caused by mutations in the dystrophin gene resulting in chronic muscle damage, muscle wasting, and premature death. Utrophin is a dystrophin protein homologue that increases dystrophic muscle function and reduces pathology. Currently, no treatments that increase utrophin protein expression exist. However, exercise increa...
متن کاملStimulation of calcineurin signaling attenuates the dystrophic pathology in mdx mice.
Utrophin has been studied extensively in recent years in an effort to find a cure for Duchenne muscular dystrophy. In this context, we previously showed that mice expressing enhanced muscle calcineurin activity (CnA*) displayed elevated levels of utrophin around their sarcolemma. In the present study, we therefore crossed CnA* mice with mdx mice to determine the suitability of elevating calcine...
متن کاملIdentification of FHL1 as a therapeutic target for Duchenne muscular dystrophy.
Utrophin is a potential therapeutic target for the fatal muscle disease, Duchenne muscular dystrophy (DMD). In adult skeletal muscle, utrophin is restricted to the neuromuscular and myotendinous junctions and can compensate for dystrophin loss in mdx mice, a mouse model of DMD, but requires sarcolemmal localization. NFATc1-mediated transcription regulates utrophin expression and the LIM protein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 19 5 شماره
صفحات -
تاریخ انتشار 2010